Hospital General de Castellón

Servicio de Pediatría

BIOESTADISTICA

Tema 21

PROGRAMAS ESTADISTICOS del CDC de Atlanta

Analysis – Statcalc – Epitable del Epi Info 6

Otros programas:

OpenStat

PSPP

EPI INFO del CDC de Atlanta

El CDC, Centro para el control de enfermedades de Atlanta, tiene un programa basado en DOS, el Epi Info 6 (versión 6.04), Atlanta, cuya difusión es libre y gratuita. Este programa también funciona en Windows. Se puede cargar, en español, en

http://ccp.ucr.ac.cr/cursoweb/epi6.htm

En mi opinión es superior a la versión para Windows, el "Epi Info for Windows", que pasados varios años aún es de manejo difícil, más incompleto y todavía con algunos problemas., aunque también con notables mejoras. La última versión, de agosto de 2008, se puede descargar, en inglés, en la Web del CDC, cuya dirección es : http://www.cdc.gov/epiinfo. Hay también versiones más antiguas en español.

Epi6 tiene otras muchas posibilidades que pueden verse en la AYUDA (F1) o en el detallado MANUAL. En las partes en que no funcione el ratón, utilizar las teclas de dirección (flechas).

Epi 6 tiene varios programas. Sólo nos interesan ANALYSIS, EPITABLE Y STATACALC. Estos programas se pueden descargar también desde http://www.eduardobuesa.es/, en el subdirectorio Programas

ANALYSIS

DATOS:

Trabaja con datos originales, que tiene que estar en un fichero.

- a) los ficheros propios tiene la extensión .REC , pero también lee ficheros de dBase III con extensión .DBF
- b) EXCEL (de Microsoft Office) permite guardar los ficheros como archivo .DBF, lo que permite generar ficheros legibles para Analysis, si no se dispone del dBase III. El Excel 2007 ya no lo hace, pero sí el Access, al que se pueden pasar los datos desde Excel.
- c) El programa sólo guarda los ficheros que han sido cargados con la extensión .REC. Para guardar un fichero cargado como .DBF y que ha sido modificado en el uso del programa hay que reconvertirlo en fichero .REC. Se hace tecleando así:

ROUTE destino:fichero.rec (destino es c: ó d: o la dirección que sea) WRITE RECFILE

p.e. ROUTE c:\epiestad/biofich.rec , WRITE RECFILE

Si hubiera un fichero con ese nombre hay que borrarlo antes.

Se pueden crear programas, (*.PGM), con un editor de texto. Hacen automáticamente lo que se ordena. En el programa hay varios fícheros de ejemplo.

Vamos a ver el programa utilizando un fichero que he creado con el nombre BIOEJEMP.REC. Sus datos podrían proceder de 15 personas en las que hemos recogido las siguientes variables: sexo (M, H), categoría laboral o grupo (1, 2, 3, 4), dominio del inglés (S, N), un análisis cuantitativo VALOR1, otro análisis VALOR2, que se repite al cabo de un tiempo VALOR3. Se ha calculado lo que llamamos VALORDIF, que es la diferencia entre VALOR3 y VALOR2.

Los resultados de los cálculos se pueden imprimir, pulsando previamente la tecla F5. Otra opción es abrir un fíchero de texto, que se abre con la orden ROUTE y se cierra con CLOSE. (por

ejemplo: ROUTE c:\ficherin.txt). Luego se puede editar con un procesador de textos (Word, Wordpad, etc.). Epi6 tiene uno, muy flojo, llamado EPED.

He recogido los resultados tal como los dan los programas. Como han sido escritos con teclado de USA, no escribe bien las palabras con acentos, ñ y algunos símbolos. He corregido algunos y otros los he dejado tal cual aparecen en pantalla.

El programa utiliza otro lenguaje al que hemos visto en clase. A los resultados de cada prueba los llama como el parámetro de referencia: t de Student, χ^2 , F, ... Como es habitual en programas estadísticos no utiliza como referencia la DN, sino exclusivamente la t de Student. Además puede calcular la p de forma continua, no por los hitos de 0,05, 0,01, 0,001.

El fichero lo creamos con EXCEL según se ve a continuación:

	Α	В	С	D	Е	F	G	
1	SEXO	GRUPO	INGLES	VALOR1	VALOR2	VALOR3	VALORDIF	
2	Н	1	N	12	28	21	7	
3	M	3	N	14	22	20	2	
4	Н	2	S	11	21	19	2	
5	Н	1	S	18	31	32	-1	
6	Н	1	S	16	45	40	5	
7	M	2	N	21	23	16	7	
8	M	4	N	16	28	15	13	
9	Н	3	S	27	16	17	-1	
10	M	4	N	29	35	32	3	
11	Н	4	S	15	41	32	9	
12	M	2	S	11	39	32	7	
13	M	1	N	21	27	26	1	
14	Н	3	S	18	19	12	7	
15	M	2	S	21	20	18	2	
16	Н	2	S	15	33	21	12	
17								
18	En FO	RMATO a	justar la :	anchura de	e las colun	nnas a "Ai	utoajustar a	
19	la sele	cción". gu	ıardar el a	archivo en	la carpeta	en que es	té Epi6	
20	como a	archivo de	dBaseIII.	Hace vari	as preguni	tas: acept	ar todo	
21								

Ya tenemos el fichero como Bioejemp.dbf. Se guarda en la carpeta en que esté Epi6. Lo podemos reconvertir en fichero con extensión REC de la forma que ya hemos visto. Pero si no se van a modificar los datos, no es imprescindible, pues Analysis lo puede leer.

Entramos en ANALYSIS

I.—CARGAR EL FICHERO BIOEJEMP

Teclas importantes:

F1 ayuda, F2 órdenes, F3 variables, etc.

Teclear: READ bioejemp.rec o bioejemp.dbf

READ solo, da un listado de los ficheros REC disponibles. Se puede elegir uno y pulsar.

II –Listado de los datos del fichero *Teclear LIST*

REC	SEXO	GRUPO	INGLES	VALOR1	VALOR2	VALOR3	VALORDIF
1	Н	1	N	12	28	21	7
2	M	3	N	14	22	20	2
3	Н	2	S	11	21	19	2
4	Н	1	S	18	31	32	-1
5	Н	1	S	16	45	40	5
6	M	2	N	21	23	16	7
7	M	4	N	16	28	15	13
8	Н	3	S	27	16	17	-1
9	M	4	N	29	35	32	3
10	Н	4	S	15	41	32	9
11	M	2	S	11	39	32	7
12	M	1	N	21	27	26	1
13	Н	3	S	18	19	12	7
14	M	2	S	21	20	18	2
15	Н	2	S	15	33	21	12

III-Variables cualitativas

A) Frecuencias y porcentajes con intervalo de confianza

Teclear FREQ SEXO /C

					95% Límites Conf
H M		8 7	53.3% 46.7%	53.3% 100.0%	26.6%-78.7% 21.3%-73.4%
			100.0%		

B) Contraste de dos variables cualitativas

--con 2 modalidades cada una, datos independientes (tabla de 2x2)

Teclear TABLES SEXO INGLES

		INGLES	S	
SEXO		N	S	Total
	-+			+
Н		1	7	8
М	1	5	2	7
Total	-+			+ l 15
IULai	1	U)	1 10

Análisis de tabla simple

Odds ratio Límites de confianza de Cornfield al 95% de OR Estimador de la Máxima Verosimilitud de OR (EMV)	0.00	< OR <	0.06 1.21 0.07
Límites de confianza exactos del EMV al 95% Límites de Mid-P exactos del EMV al 95% Probabilidad de EMV <= 0.07 si OR poblacional = 1.0		< OR < < OR < 0.034	1.16
RAZON DE RIESGOS (RR) (Efecto:INGLES=N; Exposici¢n:SEXO=N) Límites de confianza al 95% del RR	•	< RR <	0.17

Ignora la razón de riesgos si es un estudio de casos controles

Chi-Cuadr. Valores-P

Sin corregir: 5.40 0.02011616 <--- Mantel-Haenszel: 5.04 0.02474467 <--- Correcci¢n de Yates: 3.23 0.07250203

Test exacto de Fisher: Valor de P para 1 cola: 0.0349650 <--- Valor de P para 2 colas: 0.0405594 <---

Un valor esperado es < 5; se recomiendan los resultados exactos de Fisher.

-- con más de 2 modalidades en alguna variable (tabla de fxk) aplica nuestra fórmula n $^\circ$ 3

Teclear TABLES SEXO GRUPO

			GR	JPO		
SEXO		1	2	3	4	Total
		+				-+
	Н	3	2	2	1	8
	M	1	3	1	2	1 7
		+				-+
	Total	4	5	3	3	15

Un valor esperado es < 5. Chi cuadrado Incorrecto.

Chi cuadrado = 1.81
Grados de libertad = 3

Valor de P = 0.61318784

IV- Una ó más variables son cuantitativas

a) Estadística descriptiva Calcula varios parámetros importantes

Teclear FREQ VALOR1 o MEANS VALOR1

VALOR1		Frec	Porcent	Acum
	-+-			
11		2	13.3%	13.3%
12		1	6.7%	20.0%
14		1	6.7%	26.7%
15		2	13.3%	40.0%
16		2	13.3%	53.3%
18		2	13.3%	66.7%
21		3	20.0%	86.7%
27		1	6.7%	93.3%
29		1	6.7%	100.0%
	-+-			
Total		15	100.0%	

Total	Suma	Media		Desv est	Error est
15	265	17.667		5.367	1.386
M;nimo	Percen.25	Mediana	Percen.75	M ximo	Moda
11.000	14.000	16.000	21.000	29.000	21.000

La T de Student es válida si la media difiere de cero. Estad;stico T = 12.748, gl = 14 valor-p = 0.00000 (Esto sirve para aplicar la fórmula n° 10, si ponemos d en vez de VALOR1)

b) Contraste de una variable cualitativa con 2 modalidades y otra cuantitativa; datos independientes.

(= contraste de dos medias = "prueba de la t de Student" = "Unpaired t-test") aplica nuestras fórmulas n° 6 , 7 , 8 y 9

Teclear MEANS VALOR2 SEXO /N

MEANS de VALOR2 para cada categor; a de SEXO

SEXO H M Diferencia	Observad 8 7	los Total 234 194	Media 29.250 27.714 1.536	Varianza 107.643 49.238	Desv Est 10.375 7.017	
SEXO	M;nimo	Percen.25	Mediana	Percen.75	M ximo	Moda
H	16.000	20.000	29.500	37.000	45.000	16.000
M	20.000	22.000	27.000	35.000	39.000	20.000

ANOVA

(S¢lo para datos distribuidos normalmente)

Variaci¢n	SC	gl	MC	Estad;stico F	valor-p	valor-t
Intra	8.805	1	8.805	0.109	0.746408	0.330337
Inter	1048.929	13	80.687			
Total	1057.733	14				

Test de homogeneidad de la varianza de Bartlett's Chi cuadrado de Bartlett's = 0.878 g. libertad = 1 valor-p = 0.348835

Las varianzas son homog, neas con un 95% de confianza. Se puede utilizar el ANOVA si las muestras est n distribuidas normalmente.

Test Mann-Whitney o Wilcoxon 2-muestras (test Kruskal-Wallis para dos grupos)

H Kruskal-Wallis (equivalente a Chi cuadrado) = 0.030 Grados de libertad = 1 valor p = 0.862065

El programa ha calculado el ANOVA-1 y el Kruskal-Wallis, aunque sólo hay dos muestras, pero el resultado es correcto. Nuestra Z es aquí "valor-t"

Teclear MEANS VALOR2 GRUPO /N

MEANS de VALOR2 para cada categor;a de GRUPO

GRUPO	Observado	s Total	Media	Varianza	Desv Est	
1	4	131	32.750	69.583	8.342	
2	5	136	27.200	70.200	8.379	
3	3	57	19.000	9.000	3.000	
4	3	104	34.667	42.333	6.506	
GRUPO	M;nimo F	Percen.25	Mediana	Percen.75	M ximo	Moda
1	27.000	27.500	29.500	38.000	45.000	27.000
2.	00 000	01 000	00 000	22 000	20 000	20.000
2	20.000	21.000	23.000	33.000	39.000	20.000
3	16.000	16.000	19.000	22.000	22.000	16.000

ANOVA

(S¢lo para datos distribuidos normalmente)

Variaci¢n	SC	gl	MC	Estad;stico F	valor-p
Intra	465.517	3	155.172	2.882	0.084089
Inter	592.217	11	53.838		
Total	1057.733	14			

Test de homogeneidad de la varianza de Bartlett's Chi cuadrado de Bartlett's = 1.910 g. libertad = 3 valor-p = 0.591212

Las varianzas son homog, neas con un 95% de confianza. Se puede utilizar el ANOVA si las muestras est n distribuidas normalmente.

An lisis de la Varianza de una v;a de Kruskal-Wallis

H Kruskal-Wallis (equivalente a Chi cuadrado) = 7.110Grados de libertad = 3valor p = 0.068473

d). Contrate de una variable cualitativa con 2 modalidades y otra cuantitativa ; datos apareados. (= contraste de 2 medias con datos apareados =
"prueba de de la t de Student para datos apareados" = "paired t-test")

Recordar lo dicho en IV-a: VALORDIF equivale a nuestra d

Teclear FREQ VALORDIF o MEANS VALORDIF

VALORDIF	Frec	Porcent	Acum			
-1	2	13.3%	13.3%			
1	1	6.7%	20.0%			
2	3	20.0%	40.0%			
3	1	6.7%	46.7%			
5	1	6.7%	53.3%			
7	4	26.7%	80.0%			
9	1	6.7%	86.7%			
12	1	6.7%	93.3%			
13	1	6.7%	100.0%			
Total	15	100.0%				
Tota	1	Suma	Media	Varianza	Desv est	Error est
1	5	75	5.000	18.857	4.342	1.121
M;nim 1.00		en.25 2.000	Mediana 5.000	Percen.75 7.000	M ximo 13.000	Moda 7.000

La T de Student es v lida si la media difiere de cero. Estad; stico T = 4.459, gl = 14 valor-p = 0.00054

 $\underline{\mathrm{e}}$) Coeficiente de correlación y ecuación de regresión. contraste de 2 variables cuantitativas.

Teclear REGRESS VALOR 3 VALOR2

Coeficiente de correlaci \dot{r} : r = 0.87 r^2 = 0.76 L;mit. de confianza al 95%:0.40 < r^2 < 0.91

Fuente	gl	Suma Cuadrados	Media Cuadrados	Estad;stico-F
Regresi¢n	1	715.1482	715.1482	40.32
Residuales	13	230.5852	17.7373	
Total	14	945.7333		

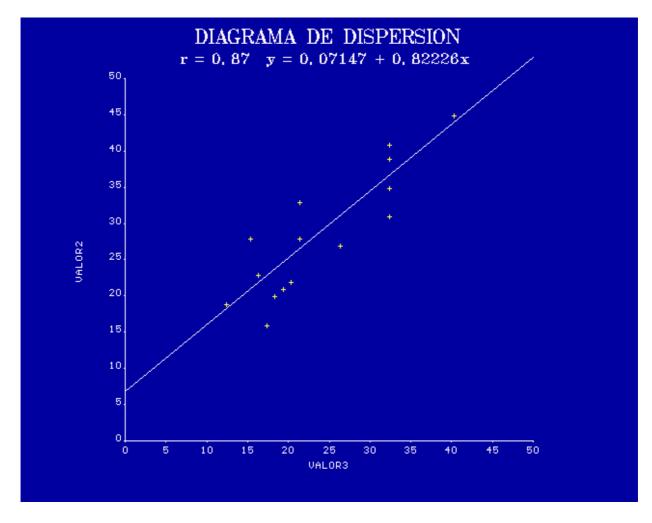
Coeficientes B

		Coeficiente	Lim. Conf.	. al 95%		Test-F
Variable	Media	В	Inferior	Superior	Error Est	Parcial
VALOR2	28.5333	0.8222614	0.542497	1.102026	0.129496	40.3188
Intersecc-N	7	0 0714736				

Otra forma de calcular r = Suma Cuadrados Regresion / Suma cuadrados Total = 0,756

Ecuación : y=a+bx ; a = Intersecc-Y ; b = coeficiente B ; y = s VALOR3 ; X = s VALOR2. Por tanto y=0.0715 + 0.8223 + 0.0715 + 0.8223 + 0.0715 + 0.8223 + 0.0715 + 0.8223 + 0.0715 + 0.8223 + 0.0715 + 0.8223 + 0.0715 +

Valoración de r : lo que obtendríamos en la fórmula nº 14 es la raíz cuadrada de "Test F" ó E"Estadístico F" = $(40,3188~=6,349,~{\rm que}>t(13~,0,001)=4,221$, por lo que se rechaza H0 a ese nivel de significación. p<0,001 . Hay una relación positiva y significativa entre Valor3 y Valor2


f) gráfico de la ecuación de regresión

(= diagrama de dispersión = "scatter")

Introduciendo hasta 5 líneas de título se puede completar el gráfico ; suele añadirse r y la ecuación :

Teclear Title 1 "\c DIAGRAMA DE DISPERSION"

Title 2 "\c r = 0.87 y = 0.0715 + 0.8223x" SCATTER VALOR3 VALOR2 /r

EPITABLE

Trabaja con parámetros ya calculados, que vamos introduciendo cuando los pide. Son frecuencias, porcentajes, medias, varianzas, tamaños muestrales, etc. Calcula intervalos de confianza, contrasta variables, hace pruebas de conformidad, calcula números al azar, probabilidades, etc

Se pueden editar los resultados antes de imprimirlos. Para imprimir se pulsa F5. Pulsando F2 se puede abrir un fichero de texto, que luego se puede modificar en un programa de textos.

1. Proporciones o porcentajes con su IC

Teclear sucesivamente Describir, Proporción, Muestreo aleatorio simple

Proporci¢n, intervalo de confianza

Muestreo aleatorio Simple

Numerador : 7
Total de observaciones : 12
Proporci¢n : 58.3333%

IC

Quadr tico de Fleiss 95% CI [28.5989-83.5010] Binomial exacto 95% CI [27.6670-84.8348] Mid-p 95% CI [30.2121-82.8309]

2. IC de una media Teclear Describir , Media

Intervalo de confianza de una media, Alpha= 5% Media muestral : 10.500 Desviaci¢n est ndar muestral : 2.200 Tama¤o muestral : 40 Tama¤o de la poblaci¢n : 999999999 Intervalo de confianza (95%) : 9.82, 11.18

3. Comparación de porcentajes o frecuencias

a) 2 muestras

Teclear Comparar , Proporción , Porcentajes , 2 , OK

Comparaci¢n de proporciones

Muestra Porcentaje Tama¤o muestral
-----# 1 18.00 25
2 22.00 26
Un valor esperado < 5
Xý corregida de Yates 0.08
valor : 0.776725

b) más de 2 muestras (por ejemplo, una tabla de 2x3)

Teclear Comparar, Proporción , Tabla de datos rxc , 3 , 2 , OK

	5 6	7 3	9 8	21 17
22 2 %	11	10	17	38
Chiý	de los	valores	esperados < . 1.34	3
Grados	de libe	ertad	2	
valor			0.510797	

4. Prueba de conformidad

Teclear Comparar, Proporción, Bondad de ajuste , 3 , OK

Bondad	del ajuste		
Clase	Observado	Esperado (#	ㅇ 읭)
N§1	16	25.0000	25.0
N§2	28	25.0000	25.0
N§3	31	25.0000	25.0
Chi2			5.04
Grados	de libertad		2
valor		0.08	0460

5. Contraste de medias

a) 2 muestras (t de Student) Teclear Comparar , medias , 2 , OK

b) más de 2 muestras

Teclear Comparar , medias , 4 , OK

	de la va			
Muestra	Media	Varianza	Tam	año muestral
# 1	12.00	9.00		14
# 2	13.00	8.00		18
# 3	10.00	11.00		19
# 4	15.00	10.00		15
Varianza	entre mu	estras	:	73.18
Varianza	residual		:	9.53
Estadíst	ico F		:	7.68
valor de	р		:	0.000178

6. Comparación de varianzas

Teclear Comparar , varianzas

Comparaci¢n de varianzas	
Varianza N§1	26.50
Tama¤o muestral N§1	28
Varianza N§2	22.40
Tama¤o muestral N§2	22
F	1.18
Valor-p de cola derecha	0.349989
Valor-p exacto 2-colas	0.699978

7. Estudios caso-control

Teclear: Estudios , Caso-control , No apareados

	Enfermos		
	+	_	
Caso	3	33	36
Control	25	10	35
	28	43	71

Estudio de caso-control Proporci¢n de exposici¢n Entre casos 10.71/100 Entre controles 76.74/100 Test de significaci¢n Valor-p una-cola(Fisher): 0.000000 0.000000 Valor-p dos-colas(Fisher): Chi cuad. de Pearson Xý:29.58 p:0.000000 Chi cuad. de Yates Xý:27.00 p:0.000000 Medidas de asociaci¢n y 95% intervalo de confiaza Raz¢n de ventajas (OR): 0.04 0.01, 0.15 Fracci¢n prevenible 96.4% 85.4, 99.1 L; mites de confianza exactos de la OR Fisher: 0.0062 0.1634 Mid-p: 0.0079 0.1440

8. Eficacia vacunal

Teclear : Estudios , Método de control , Eficacia vacunal

Porcentaje de poblaci¢n vacunada: 78.00 Porcentaje de casos vacunados: 25.00 Eficacia vacunal 90.60%

9. Valoración pruebas de cribado ("screening")

Teclear : Estudios , Cribaje

	Enfermedad			
	+	-		
Test +	45	3	48	
Test -	5	68	73	
	50	71	121	

Cribaje

Medidas de aso	ciaci¢n y	95%	intervalo	de confi	laza
Sensibilidad			90.0%	77.4,	96.3
Especificidad			95.8%	87.3,	98.9
Valor predicti	vo positiv	70	93.8%	81.8,	98.4
Valor predicti	.vo negativ	70	93.2%	84.1,	97.5

10. Tamaño muestral

Teclear : Muestras , Tamaño muestral , Proporción simple

Tama¤o muestral, Proporci¢n simple		
Tama¤o de la poblaci¢n	:	999999
Precisi¢n deseada (%)	:	5.0
Prevalencia esperada (%)	:	16.0
Efecto del Dise¤o	:	1.0
Nivel de confianza	:	95%
Tama¤o muestral	:	207

11. Números al azar (por ejemplo Primitiva)

Teclear : Muestras , Listado n^2 aleatorios , 6 , 1 , 49Sale 4 9 14 22 25 28

12. Probabilidades de una distribución binomial

Teclear Probabilidades , Dist. Binomial

```
Se entran los 4 datos que pide
Binomial: Proporci¢n vs. Estd.
Total de observaciones : 8
Numerador : 4
Porcentaje esperado (%) : 30.00
Porcentaje observado (%) : 50.00
Probabilidad de que el # de los sucesos sea < 4 = 0.8058956
<= 4 = 0.9420323
= 4 = 0.1361367
=> 4 = 0.1941043
> 4 = 0.0579676
Valor-p dos-colas: 0.25175236
95% intervalo de confiaza: 1-7
```

13. Probabilidades de una distribución de Poisson

Teclear : Probabilidades , Distr. Poisson

```
Poisson: Suceso raro vs. Estd. # Observado de sucesos 3.00 # Esperado de sucesos 0.300 Probabilidad de que # de los sucesos sea < 3.00 = 0.9964005 = < 3.00 = 0.9997341 = 3.00 = 0.0033336 => 3.00 = 0.0035994 > 3.00 = 0.0002658 si el n£mero medio de sucesos es 0.300 ( = \lambda )
```

14. Prueba exacta de Fisher

Teclear : Probabilidades , Test exacto Fisher

15: Permutaciones y combinaciones

Teclear : Probabilidades , Comb. Permutaciones

```
Permutaciones/Combinaciones
Número de unidades N 49
Tomando X en el momento X 6
n° de permutaciones 10068347520
n° de combinaciones 13983816 (p.e. la Primitiva)
```

16. Probabilidades de la Distribución normal

Teclear : Probabilidades , Rango Dist. Normal

Pide la media, desviación estándar y límites del intervalo cuya p se desea calcular:

Rango de Distribuci¢n Normal

Media muestral 150.00

Desviaci¢n est ndar muestral 8.00

Lower bound of range 152.00

Upper bound of range 158.00

Probabilidad de observar un valor

< 152.00 = 0.59871

> 152.00 y <= 158.00 = 0.24264

> 158.00 = 0.15866

USO DE STATACALC

De su oferta nos resulta útil la <Tabla de 2x2> ó 2xn . Proporciona cálculos de Chi2 y sus variantes, OR, RR ,intervalos de confianza,

1. Tabla de 2x2

pide a1 , a2 , b1 y b2

```
+ Enfermo -
                                      An lisis de Tabla Simple
                         Odds ratio = 2.40 (0.45 <OR< 13.36)
E +----+
x + | 6 | 8 | 14 L; mites de Confianza de Cornfield (95%) para OR
p +----+
                                Riesgo relativo = 1.80 (0.68 <RR< 4.77)
u - | 5 | 16 | 21 L; mit. de Confianza (Serie de Taylor) 95% para RR
  +----+
                         Ignora el R.R. es estudios de Caso-control.
  11 24 35
                                             Valor Chi Valor-P
                                               _____
                              Sin correcci¢n: 1.41 0.2343701
Mantel-Haenszel: 1.37 0.2411708
Corr. de Yates: 0.67 0.4136090
                      Test exacto de Fisher: valor-P 1-cola: 0.2063255
                                           valor-P 2-colas:0.2831146
                                 Un valor esperado es menor que 5.
```

Se recomienda test de Fisher.

F2 m s estratos; <Enter> No m s estratos; F10 Salir

pulsando **E** salen límites de confianza más exactos de la OR:

2. Tabla de 2x2 con estratos

Valor Chi Valor-P
-----Sin correcci¢n: 1.05 0.3053193
Mantel-Haenszel: 1.01 0.3160728
Corr. de Yates: 0.36 0.5457953
Test exacto de Fisher: valor-P 1-cola: 0.2734554
valor-P 2-colas:0.4136492

Un valor esperado es menor que 5. Se recomienda test de Fisher.

F2 más estratos; <Enter> No m s estratos; F10 Salir

se pulsa F2:

```
+ Enfermo -
                                  Odds ratio = 0.50 (0.06 < OR < 4.24*)
E +----+ L; mites de Confianza de Cornfield (95%) para OR
x + \mid 6 \mid 4 \mid 10 *Cornfield inexacto. Usar preferentemente L; mites
p +----+
                           exactos.
u - | 9 | 3 | 12 Riesgo relativo = 0.80 (0.44 < RR < 1.46)
e +----+
                           L;mit. de Confianza (Serie de Taylor) 95% para
RR
      15 7 22
                             Ignora el R.R. es estudios de Caso-control.
S
t
                                                             Valor-P
                                                 Valor Chi
0
                                Sin correcci¢n: 0.57 0.4519670
Mantel-Haenszel: 0.54 0.4624327
Corr. de Yates: 0.09 0.7699053
```

Un valor esperado es menor que 5. Se recomienda test de Fisher.

valor-P 2-colas: 0.6517028

F2 m s estratos; <Enter> No m s estratos; F10 Salir

Test exacto de Fisher: valor-P 1-cola: 0.3839009

```
***** An lisis Estratificado *****
Resumen de 2 Tablas
Odds ratio cruda para todos los estratos = 0.45
Odds Ratio Ponderada de Mantel-Haenszel= 0.45
Límites de Confianza de Cornfield 95% 0.11 < 0.45 < 1.84
Chi Resumen de Mantel-Haenszel = 0.87
Valor de P = 0.35131291
RR Crudo para todos los estratos= 0.74
Riesgo Relativo Ponderado de Mantel-Haenszel de Enfermedad, dada la Exposici\hat{r}n= 0.74
Límites de confianza de Greenland/Robins= 0.46 < MHRR < 1.20
```

<Enter> para otros; F10 para salir.

3. Tabla mayor de 2x2

+ Enfermo -			rmo -		Análisis de Tabla Simple
	+		++		
Ε		2	5	7	Chi = 1.52
Х	+		++		3 grados de libertad.
р		3	2	5	valor $p = 0.67768600$
u	+		++		
е		5	J 5 I	10	
S	+		++		<enter> otra tabla; F10 Salir</enter>
t		9	8	17	
0	+		++		
		19	20	39	

El programa **OpenStat** quiere emular al programa estrella SPSS. Es muy potente , pero está en pleno desarrollo, aún presenta algunos fallos y su manejo no es fácil.. Puede descargarse en español en

http://openstat.en.softonic.com/

y la última versión en inglés en

http://statpages.org/miller/openStatSetup.exe

El programa **PSPP** también emula al SPSS. Menos potente que el anterior, pero de manejo más fácil. También está en pleno desarrollo. Se puede descargar en español en http://www.cecaps.ufmg.br/pspp/?page id=141&lang=es

Ambos, mejor el PSPP, permiten importar los datos de un fichero de texto, incluso del más simple, como es el block de notas. Tienen su correspondiente manual. Se verán en clase.